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Table 5. Homomorphisms o f  reducible space groups 
onto layer and rod groups with respect to Z reductions: 

trigonal groups 

O'ab tr c q 
C 3 C 4 R3 fill33 ¢c/33 0, a/3, 2a/3 
C31 C2i R3 fill3 ~ #c/3 ~ 0, c/6, c/3 

0, a/3, 2a/3, c/6, 
c/3, a/3 + c/6, 

D 3 D 7 R32 /~1/3312 ~c/3321 a/3 +c/3, 2a/3 +c/6, 

2a/3+c/3 
C3v 1 C5o R3m /~1/331m ~c/33mI ~ 0, a/3, 2a/3 

C6o R3c /3t/231m /~c/33cl J ['0, a/3, 2a/3, c/6, 

D3c 1 D35d R3"m P~laJ"12/m ~e/33-ml ~ c/3, a/3+c/6, 
D6d R3c fil13312/m ~c/33cl [ a/3 +c/3, 2a/3 +c/6, 

[2a/3+c/3 

national Tables for  Crystallography as well as in the 
1952/1969 editions of International Tables for  X-ray 
Crystallography; and the reverse setting used in the 
first edition of Vol. I of Internationalle Tabellen zur 
Best immung yon Kristallstrukturen (1935). The rota- 
tion of a group by 7r/3 around the hexagonal axis 
sends it from one setting to the other. It leaves both 
homomorphic projections (layer and rod groups) 
invariant, so that they are the same for both obverse 
and inverse settings. They are listed in Table 5. 

7. Concluding remarks 

Let us briefly overview what we have described in the 
two papers and what still should be done. We have 
determined homomorphic projections of reducible 
plane and space groups onto their factor groups with 
respect to all types of Z reductions and Z decomposi- 
tions. The projections connected with Z decomposi- 
tions were used to introduce the nomenclature and 
symbols of frieze, layer and rod groups compatible 
with symbols for plane and space groups. The 

determination of factor groups is also equivalent to 
the classification of reducible plane and space groups 
into pairs of frieze-group classes and into pairs of 
layer- and rod-group classes, respectively. We must 
say, however, that this is not the end of the problem 
up to three dimensions. An exact and complete solu- 
tion must also involve the problem of origin choices 
since there are cases where we may list a layer or rod 
group as a projection of different space groups using 
the same symbol for this layer and/or  rod group, even 
though these projections have different locations in 
space, if we accept that the location of the space 
group is given by its diagram. There is only one 
remedy for this: we have to fix the Hermann-Mauguin 
symbols of space groups and of frieze, layer and rod 
groups to certain standard origin choices and use 
modified symbols if the groups are shifted in space. 
The addition to the standard symbol of a shift vector 
in parentheses would give a simple and clear conven- 
tion for this purpose. 
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Abstract 

This paper describes a method for automatic structure 
determination by the application of Karle-Hauptman 

0108-7673/93/020287-07506.00 

matrices to the phase problem. A new method, the 
common-minor strategy, is used to combine the infor- 
mation contained in several Karle-Hauptman 
matrices. Sets of phases large enough to define the 
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structure are obtained. If the matrices are linked 
properly, phases contained in a larger array of 
matrices can be adequately restricted to a common 
origin. The partial solutions obtained on Fourier 
transformation are extended to the complete structure 
in a fully automatic manner. A new algorithm is 
presented for the maximization of the determinant of 
a Kar le -Hauptman matrix as a function of the phases. 

Introduction 

In a previous paper, which described a new algorithm 
for the construction of separate Kar le-Hauptman 
matrices (de Gelder, de Graaff & Schenk, 1990), 
results were presented for phase sets obtained from 
single matrices. Phase sets, obtained by the maximi- 
zation of the determinant as a function of the phases, 
contained low phase errors but were too small to 
solve the structure. Extension of these sets via tangent 
refinement, using F A S T A N  from the M U L T A N  sys- 
tem (Declercq, Germain & Woolfson 1975), proved 
difficult. To extend a phase set without using the 
tangent formula, Tsoucaris (1970) used the maxi- 
mum-determinant rule to determine phases of 
additional columns, starting from Karle-Hauptman 
matrices containing known phases. Application to 
protein structures led to interesting results (de Rango, 
Mauguen & Tsoucaris, 1975; de Rango, Mauguen, 
Tsoucaris, Dodson, Dodson & Taylor, 1979). 
However, for small structures it is almost always 
impossible to build a Kar le-Hauptman matrix con- 
taining only known reflections. 

The generalized maximum-determinant rule, sug- 
gested by Tsoucaris (1970) and mathematically 
proved by Heinerman, Kroon & Krabbendam (1979) 
seemed to overcome this problem since ab initio phase 
information was no longer needed. Matrices with trial 
phases obtained by maximization of the determinant 
could in principle be used as a starting matrix for 
Tsoucaris's method. The process of maximizing the 
determinant becomes unstable if the maximum value 
of the Kar le-Hauptman matrix is too small, which is 
the case for matrices of increasing order. Therefore, 
this way of extending phase sets would fail for many 
small structures. 

To overcome these problems, a multimatrix 
m e t h o d -  the concurrent maximization of a number 
of interdependent ma t r i ce s -was  proposed by de 
Graaff & Vermin (1982). This method forces a set of 
reflections to occur in all resulting matrices although 
the individual matrices are built one after another. 
Linking different matrices this way might cause the 
phases to refine to a common origin, possibly resulting 
in sets of phases large enough to define the structure 
(at least partly). The method gave satisfactory results 
in a few cases but needed tangent refinement to opti- 
mize and extend the phase sets further. 

In the current paper, a new method is described 
for linking Kar le-Hauptman matrices, which gives 
satisfactory results for all nine structures tested. After 
constructing a large Kar le-Hauptman matrix, by use 
of the algorithm described in a previous paper (de 
Gelder et al., 1990), several smaller overlapping 
matrices can be extracted from the large matrix. The 
construction procedure, called the common-minor 
strategy (CMS), will be described in detail. Karle- 
Hauptman matrices built using this method are all 
strongly linked. This is illustrated by the quality of 
the large phase sets calculated. After Fourier tranSfor- 
mation, the partial models obtained are of sufficient 
quality to permit the automatic extension of the map 
obtained to the complete structure. For this extension, 
the program A U T O F O U R  (Kinneging & de Graaff, 
1984) was used. 

The implementation of the common-minor strategy 
and the automatic Fourier transformation program 
A U T O F O U R  into a set of programs, C R U N C H ,  led 
to a system capable of the automatic solution of 
crystal structures. A new method of maximizing deter- 
minants was implemented. The results are compared 
here to the results obtained using the earlier method 
(de Graaff & Vermin, 1982). The new maximization 
procedure is described in detail. Both the old and the 
new procedures gradually change the values of the 
phases in the matrix to maximize the value of the 
determinant. Because of this, the maximization 
methods are only applicable to noncentrosymmetric 
structures. 

Karle--Hauptman matrices 

The following abbreviations and notations will be 
used throughout this paper: 

KH 
A 
m 
B 
ao 

bo 
/3,j 
Ot 

n 

H,j 

N 

det A 

Kar le-Hauptman 
the KH matrix with elements E (H)  
the order of A 
the inverse of A 
an element of A ( i , j =  1, 2 , . . . ,  m) 
the phase of a 0 ( i , j =  1 , 2 , . . . ,  m) 
an element of B ( i, j = 1, 2 , . . . ,  m) 
the phase of b o ( i, j = 1, 2 , . . . ,  m) 
a vector of elements a~, a 2 , . . . ,  a ,  
a vector of elements f l~ , /32 , . . . , /3 ,  
the number of independent reflections in A 
the reciprocal-lattice vector associated with 
a O, e.g. H j - H i  
the number of atoms in the unit cell 
a vector of elements 7r 
the value of the determinant of A 

Kar le-Hauptman matrices can be constructed 
using ordinary, normalized or unitary structure fac- 
tors. We use normalized structure factors and thus 
an element a 0 of a Kar le-Hauptman matrix A is 
defined as a0= E(H1~-HI i ) ,  where H1j and H~ are 
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the reciprocal-lattice vectors associated with the first- 
row elements i and j. Of course, all elements in a 
Karle-Hauptman matrix are uniquely defined by the 
first-row elements. 

Important properties of Karle-Hauptman matrices 
are: 

(1) A is Hermitian, i.e. au= a*.  
(2) A is positive semidefinite, i.e. all eigenvalues 

are greater than or equal to zero (Goedkoop, 1952). 
(3) d e t A > 0 i f m - < N ,  d e t A = 0 i f m > N ( G o e d -  

koop, 1952; Kitaigorodsky, 1950). 
(4) The maximum-determinant rule (Tsoucaris, 

1970) holds: when a given KH matrix A of order m, 
containing structure factors with known phases, is 
enlarged to a KH matrix A1 of order m + 1 by adding 
a row and a column containing nonzero elements 
with unknown phases, the most probable set of phases 
in the new column maximizes det Al /det  A. 

(5) The generalized maximum-determinant rule 
(Tsoucaris, 1970) holds: for a given KH matrix A the 
most probable set of phases will maximize det A. 
Heinerman, Kroon & Krabbendam (1979) have been 
able to prove this generalized rule if terms of fifth 
and higher order in the expansion of the determinant 
are negligible. 

(6) A simple expression exists for the derivative 
of det A with respect to the phase of element /j: 

8 det A~ 8aij = 21a,jl Ib,jl sin (fl~j - au) det A 

( i , j = 1 , 2 , . . . ,  m) (1) 

(de Graaff & Vermin, 1982). 
For a KH matrix to be useful in ab initio phase 

determination, the main criterion is that the matrix 
A must have large off-diagonal elements (thus 
decreasing det A) to increase the selectivity of the 
local maxima. In practice this means that the average 
1El value of the elements in the matrix A must be as 
large as possible (de Gelder et al., 1990). 

The order of a KH matrix must be less than the 
number of atoms in the unit cell. However, it will be 
shown that the influence of the order of the matrices 
on the quality of the phase sets is not drastic. 

Construction of interdependent matrices: 
the common-minor strategy 

Determination of a set of phases large enough to 
define the structure implies the construction of a set 
of matrices that together contain a sufficient number 
of independent reflections. However, the matrices 
must also have a number of reflections in common, 
to ensure concurrent refinement of the phases leading 
to a common origin (in real space) for all the matrices 
used. These two requirements impose conflicting con- 
straints on the construction process. 

If each matrix is constructed by bordering a minor 
of the previous one, a method is obtained that guar- 

antees a strong connection between neighbouring 
matrices. This strategy was proposed by Kinneging 
(1986), who called it the panorama strategy (Fig. 1). 

Experience showed that greater overlap between 
successive matrices improves the stability of the pro- 
cess of phase determination. However, the amount 
of overlap between different matrices needed to 
ensure stability of the refinement process proved to 
be prohibitive. Unrealistically high numbers of 
matrices are necessary to obtain an adequate set of 
phases. Even so, the link between the first and the 
last matrix of the chain proved to be tenuous at best. 
The conclusion must be that determination of larger 
sets of phases by the panorama strategy is not possible 
in practice. An alternative procedure, based on the 
algorithm proposed in an earlier paper, is given 
below. 

A large Karle-Hauptman matrix A of order L, the 
overall matrix, is constructed using the procedure 
proposed by de Gelder et al. (1990). The first row of 
this matrix, excluding E (000), is divided into T equal 
parts. Smaller matrices are constructed by combining 
any two of these to form the first row of a Karle- 
Hauptman matrix with elements related to those 
found in the large matrix A. Permutation allows 
½( T 2 -  T) different matrices of order 2 ( L -  1) /T  + 1 
to be constructed. Fig. 2 is an illustration of the effects 
of this procedure. In this case, the first row of a large 
matrix A is divided into three parts ( T = 3 ) .  The 
matrices obtained by combining the resulting parts 
are drawn. The different shading illustrates the over- 
lap between the three smaller matrices: the common 
minors. 

iiiE!!.!!! I 

Fig. 1. The panorama strategy. 

1 2 3 1 ~  2 3 I ~  

Overall matrix Resulting matrices 
Fig. 2. The common-minor strategy: the construction of three 

interdependent matrices. 
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The relation between the order of the overall 
matrix, L, and the number of small matrices, M, given 
the order of the small matrices, S, is given by 

L=[l+(l+SM)a/2](S-1)/4+l. (2) 

Only values of M for which the term (l+8M) ~/2 is 
an integer are allowed. Both S and L must be odd 
and T(S-1)/2 ( = L - 1 )  must be an integer. 

The number of small matrices, M, given the values 
of L and S, is 

8M=(4L-S-3)2 / (S -1)2-1 .  (3) 

If the values of L and S or M are known, T can be 
calculated using the simple relations 

T=2(L-1) / (S -1)  (4) 

o r  

T = [ 1  +(1 +8M)~/2]/2. (5) 

From Fig. 2, it is clear that in this case all three 
matrices are connected in pairs having one minor in 
common. In general, each matrix is connected by a 
common minor to 2( T - 2) other matrices. In a set of 
M matrices there are ( T 3 - 3 T 2 + 2 T)/2 connections 
of this type, henceforth called first-order links. Each 
matrix is not linked directly to every other matrix. 
However, each matrix is connected to all other 
matrices via two first-order links. In the set of M 
matrices, 2 T 4 - 11 T 3 + 19 T 2 - 10 T second-order links 
are present. 

The first-order links in the case of M = 6 are drawn 
in Fig. 3. Each dot represents a submatrix formed by 
the combination of two parts from the first row of 
the overall matrix A. The meaning of the numbers is 
as follows. Matrix I/J is constructed by the combina- 
tion of the I th  and J th  parts from the first row of the 
overall matrix. 

Clearly, M cannot take on any integer value; only 
certain integers result in integer values for L and $. 
The number of matrices one can extract from the 
overall matrix must be in the sequence 1, 3, 6, 10, 15, 
21, 2 8 , . . .  etc.; 

M, = ~ j (6) 
j = l  

~e. 

M,=~n(n+l). (7) 

112 ?.13 

214 ~ +  
114 113 

3/4 

Fig.  3. F i r s t - o rde r  l i nks  for  M = 6. 

Given the value of M, ,  n can be calculated from the 
formula 

n=-½+(]+2M,) '/z (8) 

In practice, one takes a value for M that results in 
suitable values for S to ensure successful phase 
refinement in the individual submatrices. The order 
of the overall matrix (L) depends on the number of 
independent (strong) reflections needed to solve the 
structure using automatic Fourier extension. 

The distribution of strong reflections in reciprocal 
space determines the properties of the overall matrix 
obtained by the algorithm used for the construction. 
For each structure, different values for L and M will 
be needed to get a phase set large enough to solve 
the structure. 

Phase refinement 

The derivative of det A with respect to a given phase 
in the matrix A is given by (1). Near the maximum, 
the derivative must approach zero, which implies a 
relation between a and/3  (the phases in the matrix 
and in its inverse, respectively). These partial deriva- 
tives cannot be exactly zero because of symmetry 
relations present in A. By use of the function ~'(r), 
given by Knossow, de Rango, Mauguen, Sarrazin & 
Tsoucaris (1977), which has maxima at the atomic 
positions of the actual structure, one can conclude 
that, near the maximum of det A, 

flo~--aq+Tr ( i , j=l ,2 , . . . ,m) .  (9) 

de Graaff & Vermin (1982) proposed an iterative 
phase refinement based on these relations. The main 
objection to the scheme is that correlations between 
the independent phases are not taken into account 
while the shifts are being calculated. Nevertheless, 
satisfactory results were obtained. 

A much simpler and more straightforward pro- 
cedure, also based on the relations given above, is 
the following: instead of changing the phases ct in A 
in the direction suggested by (9), modify the phases 

of A -1 to fit the set of relations, then calculate the 
inverse of the modified inverse and use the phases in 
the resulting matrix as the next estimate of ~. The 
iteration is carried out until convergence. In this way, 
changes in any phase/3i are reflected in all elements 
of or. There are a few obvious problems here: if one 
changes the phases in A -~ it may not remain positive 
definite and if one substitutes the phases obtained by 
inverting the modified inverse of A into A this may 
result in the same situation for A. 

In practice, these problems are easily solved. 
Rather than a substitution of the values o t + ~  into 
A -a, the new values of 13 are calculated from 

, [ sin (aq + 7r)/F + F sin/3 o ] 
flO = t a n  -I ~. t cos(ao+Tr)/F+ F-~os-~o j (10) 
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F is a damping factor that may be decreased or 
increased as required. The new values of/3ij are close 
either to aij + 7r or to their old values, depending on 
the current value of F. The new estimate of ~t is 
substituted into A in a similar way. In both cases, the 
damping factors are chosen so that all matrices remain 
positive definite. 

Convergence is generally smooth; the radius of 
convergence seems to be somewhat greater than that 
of the earlier alternative. In the section discussing the 
results obtained using the package CRUNCH, a com- 
parison is given between the two methods of phase 
refinement. 

Automatic Fotlrier extension 

After the reflections are phased in the matrices con- 
structed using the common-minor strategy, a Fourier 
summation is calculated by EXFFT80 from all 
independent reflections in the matrices. From the E 
maps obtained, the largest fragment found by 
SEARCH80 is used as input to the program 
AUTOFOUR. Owing to the small number of phases 
used to calculate the E maps, the fragment that is to 
be extended to the full structure is bound to contain 
atomic positions that are incorrect, even if the input 
phases are completely correct. A UTOFOUR can cope 
with this. If the fragment contains enough informa- 
tion about the structure, AUTOFOUR is capable of 
generating the complete model of the structure with 
very small errors. 

CRUNCH: the automatic determination of structures 

Construction and CMS linking of matrices, maximi- 
zation of the determinants, automatic Fourier 
methods and several auxiliary programs are imple- 
mented in the procedure CRUNCH. CRUNCH 
automatically determines suitable parameters for the 
construction and maximization of the matrices, starts 
the calculation of the E map and feeds the results of 
the peak search into AUTOFOUR. On completion 
of  the extension process - successful or otherwise - 
the results are checked. If no solution has been found, 
the process is repeated with different random starting 
phases put into the maximization cycle etc. The 
files used in CRUNCH are compatible with the 
M U L T A N  system (Declercq, Germain & Woolfson, 
1975). 

CRUNCH consists of the following steps: 
(1) A set of linked Karle-Hauptman matrices is 

constructed using the common-minor strategy. The 
overall matrix is constructed using the method 
described in an earlier paper (de Gelder et al., 1990). 
The order O of the small matrices is determined by 
the function O = M I N ( 1 5 ,  N/4) ,  where N is the 
number of atoms in the cell. The number of small 
matrices is determined by the minimum number of 

strong reflections needed to yield a reasonable E map. 
This number was set to 2Na, where Na is the number 
of atoms in the asymmetric unit. 

(2) From random initial phases, the product of  the 
determinants of the matrices is maximized as a func- 
tion of the phases (procedure DETER). 

(3) An E map is calculated using all reflections 
present in the matrices (procedure EXFFT80). 

(4) The strongest peaks present in the E map are 
located and the largest molecular fragment is sought 
(procedures SEARCH and FRAGMENT) .  

(5) The fragment is fed into the automatic Fourier 
transform procedure to extend the model and to 
delete wrong atoms (procedure AUTOFOUR).  

Steps (2) to (5) are repeated until step (5) converges 
to a model resulting in an acceptable R2 value. 

Input to CRUNCH consists of: 
(i) space group; 

(ii) normalized structure factors; 
(iii) cell parameters; 
(iv) cell contents; 
(v) scale; 

(vi) overall temperature factor. 
For the normalization of the structure factors, the 

program NORMAL80 is used. The output from 
CRUNCH is the complete model of the structure. 
Fig. 4 shows a flow diagram of the procedure 
CR UNCH. 

Test structures 

CRUNCH was tested by trying to solve the phase 
problem for nine test structures. All the test structures 
were noncentrosymmetric. Two test structures were 
heavy-atom structures that were easily solved from 
the Patterson function. These structures were 
included in the test to find out whether CRUNCH is 
effective for non-equal-atom structures. The other 
structures consisted of easy as well as difficult equal- 
atom structures. For all test structures, real data sets 
were used and no information about the structures, 
except the cell contents, was used as input to 
CR UNCH. 

The test compounds were: 
BP40:C12H18Cu2N6O12S2 (van Koningsbruggen, 

Haasnoot & Reedijk, 1993), N -- 68, space group P21, 
Z = 2, a = 9.973, b = 14.710, c = 7.403 ,~, fl = 96.867 °. 
Solved by Patterson methods. 

DMADMB: CllH14N2 (Gorter, 1988), N = 5 2 ,  
space group P212121, Z = 4, a = 7.801, b = 7.800, c = 
17.016 ,~. Solved by MULTAN.  

i / - - - .  Yes 
DETER -~ EXFFTSO -~ SEARCH80 -~ AUTOFOUR ~-.~R2~ .~-~ -~ Structure 

T 1 
Fig. 4. Schematic overview of the CRUNCH procedure. 
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K2RUO4K:  K2RuO3(OH)2 (Elout, Haije  & Maas- 
kant, 1988), N = 32, space group P2t2121, Z --- 4, a --- 
8.012, b = 10.588, c =6.687 A. Solved by Patterson 
methods.  

PYROC: C35H46N20 6 (de Kok & Romers,  1975), 
N = 86, space group P2 t ,  Z = 2, a = 11.28, b = 11.27, 
c = 12.537 A,, fl = 93.25.  Solved by Patterson search 
methods.  

ISOPYR: C35Ha6N206 (de Kok, Romers & 
Hoogendorp ,  1975), N = 86, space group P21, Z = 2, 
a = 18.364, b = 5.955, c = 14.568 A,,/3 = 94.03 °. Solved 
by Patterson search methods.  

TOXISTEROL:  C34H46N20 6 (de Kok, Boomsma 
& Romers,  1976), N = 84, space group P2~, Z = 2, 
a = 8.912, b = 7.3136, c = 24.889 Zk,/3 = 98.93 °. Solved 
by Patterson search methods.  

TRIGAL:  C38H54024 (Hoogendorp  & Romers,  
1983), N = 124, space group P21, Z = 2, a = 12.480, 
b = 8.821, c = 21.18 A.,/3 = 98.46.  Solved by Patterson 
search methods.  

G L U C O P Y R :  C20H22N2014 (Koeners,  de Kok, 
Romers & van Boom, 1980), N = 144, space group 
P212121, Z = 4 ,  a = 8 . 1 6 ,  b=17 .05 ,  c=17 .35A, .  
Solved by Patterson search methods.  

RN001:C21H2803 (Gorter & Brussee, 1992), N = 
48, space [[roup P2~, Z = 2, a = 10.646, b = 6.462, 
c =  13.522 A , / 3  =95.218 °. Solved by MULTAN.  

Results  and concluding remarks 

All test structures were solved by C R U N C H  using 
default  settings. Tables 1 and  2 show the results found,  
using the old and the new phase-ref inement  pro- 
cedures, respectively. The n u m b e r  of  cycles, matrices 
and orders are given together with the final R and 
R2 values, both based on IEI values. The c.p.u, t ime 
on an IBM Risc 6000/320 computer  is also given. 
C R U N C H  proved to be a reliable and fast system 
for solving the test structures in a fully automatic  
way. While  a considerable  number  of  cycles was 
needed to solve the test structures T R I G A L  and 
G L U C O P Y R ,  they had not previously been solved 
by direct methods.  Determinat ion  of the test structure 
ISOPYR ended  with large values for R and R2. In 
this case, C R U N C H  did not yield a completely cor- 
rect model  of  the structure ISOPYR al though the E 
map  contained a large fragment  of  the molecule.  From 
Tables 1 and 2, it should be concluded that nei ther  
ref inement  procedure is significantly better; the new 
refinement method is merely a (good) alternative to 
the old one. 

Tables 3 and  4 show results obtained using non- 
defaul t  settings of  C R U N C H  for RN001 and 
TOXISTEROL,  respectively, using the old ref inement 
procedure.  From these tables, it may be concluded 
that the influences of  the order and the number  of  
matrices are not dramatic:  for all settings, C R U N C H  

Table 1. Results with test structures using the old phase- 
refinement method 

Compound: name of the compound. 
Cycles: number of CRUNCH cycles. 
Matrices: number of matrices used. 
Order: order of the matrices used. 
C.p.u: c.p.u, time needed for CRUNCH on an IBM Risc 6000/320 
c o m p u t e r  (in fo rma t  hh: mm:  ss). 

Space  
C o m p o u n d  g roup  Cycles  M a t r i c e s  Orde r  

BP40 P2 t 1 3 15 
DMADMB P212121 7 3 13 
GLUCOPYR P21212 t 17 21 15 
ISOPYR P21 3 10 15 
K2RUO4K P21212 , 2 3 7 
PYROC P21 7 15 15 
RN001 P2 t 4 10 11 
TOX ISTEROL P21 37 15 15 
TRIGAL P2, 40 15 15 

Final Final 
R R 2 C.p.u.  

2.63 9.26 0:57 
5.56 12.80 9:34 
3.16 7.60 1:08:24 
6.93 27.06 8:33 
5.36 14.10 t~:08 
5.57 12.69 36:13 
7.08 16.34 6:33 
3.26 8.34 1:52:00 
3.41 9.86 5:22:54 

Table 2. 

C o m p o u n d  

BP40 
DMADMB 
GLUCOPYR 
ISOPYR 
K2RUO4K 
PYROC 
RN001 
TOXISTEROI_ 
TRIGAI_ 

Results with test structures using new phase- 
refinement method 

For  exp lana t ion  o f  headings  see Table  1. 

Space  Final Final 
g roup  Cycles Matr ices  Orde r  R R2 C.p.u.  

P21 1 3 15 2.65 9.33 1:00 
P212121 10 3 13 5.54 12.78 13:53 
P212121 18 21 15 4.88 10.94 1:07:48 
P21 I1 10 15 6.74 2 6 . 0 9  27:37 
P212t2 t 3 3 7 5.36 14.10 1:22 
P21 8 15 15 6.04 13.45 43:54 
P21 4 10 11 5.19 11.74 7:19 
P21 9 15 15 6.66 14.74 23:35 
P21 57 15 15 4.97 13.09 7:36:24 

Table 3. Results with non-default settings for test 
structure RN001 

For  exp lana t ion  o f  headings  see Table  1. 

Space  
g roup  Cycles  Matr ices  Orde r  Final R Final R 2 C.p.u.  

P2 t 2 10 3 5.01 11.70 3: i 2 
P21 4 10 5 5.09 11.88 5:30 
P21 1 10 7 4.89 11.64 1:30 
P21 1 10 9 5.01 11.51 1:41 
P21 4 I0 1 ! 7.0"8 16.35 6:33 
P21 6 10 13 5.32 12.96 10:24 
P2 t 9 10 15 4.81 11.33 16:24 
P2t 8 10 17 5.20 11.67 15:30 
P21 6 6 11 6.63 15.33 9:29 
P21 3 15 11 6.69 14.26 4:22 
P21 3 21 11 4.85 11.05 4:31 
P2 t 4 28 11 6.23 14.23 7:10 

Table 

Space 
g roup  

P2~ 
P2~ 
P2~ 
P2 t 
P2~ 
P2t 
P2~ 
P2~ 

. Results with non-default settings for test 
structure TOX I STERO L 

For  exp lana t ion  o f  headings  see Table  1. 

Cycles  Matr ices  Orde r  Final R Final R2 C.p.u.  

95 15 13 3.34 8.48 4:37:18 
37 15 15 3.26 8.34 1:52:01 
52 15 17 3.37 8.53 2:34:03 
33 15 19 3.28 8.23 1:50:35 
17 15 21 3.24 8.22 59:40 
85 10 15 3.36 8.54 4:10:45 
53 21 15 3.39 8.60 2:37:52 

1 28 15 3.25 8.20 3:17 
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could solve the structures. Clearly, the default settings 
are not optimal for each individual structure. 
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Abstract  

Dirichlet-series generating functions may be con- 
structed to enumerate the number of colour lattice 
groups of any order in the triclinic case. Appropriate 
factorization of the previously known lattice- 
enumerating functions gives the number of derivative 
lattices belonging to each of these lattice groups. 
These numbers are tabulated for all indices up to 20. 
Based on these Dirichlet functions, asymptotic esti- 
mates of the average values of the corresponding 
arithmetic functions may be made; these are 1.977 
for the three-dimensional colour lattice groups of 
order n and 1.823gh 2 for the derivative lattices having 
group structure C/gh® C/g@ C/. Such estimates can 
also be made for the relative abundance of groups 
with different numbers of cycles in their structure; a 
single-cycle structure occurs for roughly 92% of all 
derivative lattices. A similar argument shows that, in 
over 98% of cases, one properly chosen co-opted term 
suffices to ensure primitivity in diredt methods. 

Introduction 

The rapidly expanding field of mathematical 
chemistry, that is the application of graph theory and 

0108 -7673/93 / 020293 -08 $06.00 

combinatorics to chemistry, has had considerable 
impact on organic chemistry and even in inorganic 
chemistry has developed enough to warrant a recent 
major review (King, 1992). Despite this, there have 
been few attempts to apply such approaches to solid- 
state and crystal chemistry. This series of papers, 
together with some parallel work on graph-theory 
approaches to the bond-valence distribution in solids 
(Rutherford, 1990, 1992a), respresents an attempt to 
redress this situation and explore the potential that 
mathematical chemistry holds for the enrichment of 
crystallography. 

One important concept of combinatorics is the 
generating function, where the number of distinct 
objects with a given property is simply the coefficient 
of one term in the expansion of that function. The 
application of power-series generating functions to 
isomer-counting problems in chemistry derives from 
Cayley (1874). Their advantages, besides elegance 
and compactness, lie in their usefulness in deriving 
statistical information on, and asymptotic estimates 
of, the number of isomers (or other geometric objects) 
involved in the enumeration. 

Derivative lattices (Billiet & Bertaut, 1983) arise in 
practice both as real lattices (commensurate super- 
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